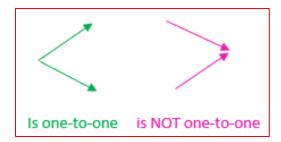
- If every horizontal line intersects the graph of a function at no more than one point, f is a <u>one-to-one</u> function.
- 2) If f is a one-to-one function and f(5) = 2, then $f^{-1}(2) = 5$
- 3) If f⁻¹ denotes the inverse of a function f, then the graphs of f and f⁻¹ are symmetric with respect to the line <u>y = x</u>.
- 4) If the domain of a one-to-one function f is $[8,\infty)$, the range of its inverse, f^{-1} , is $[8,\infty)$. Switch the coordinates for inverse
- 5) If (-1,3) is a point on the graph of a one-to-one function f, which of the following points is on the graph of f⁻¹?

Choose the correct answer below.


Switch the x and y coordinates for inverse

- 0 (1, 3)
- (-3,1)
- olimitati (3, 1)
- (-1, -3)
- 6) Suppose f is a one-to-one function with a domain of $\{x | x \neq 4\}$ and a range $\{y | y \neq \frac{3}{4}\}$. Which of the following is the domain of f^{-1} ?

Choose the correct answer below.

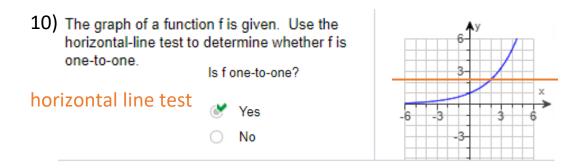
Switch domain and range for inverse

- O {x|x≠4}
- all real numbers

Yes

No

8) With ordered pairs, one-to-one function can't have duplicating **y** values: For the following function, determine whether the function is one-to-one.

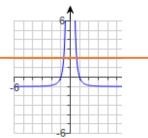

 $\{(4,6), (3,9), (-8,14), (1,-8)\}$

Is the function one-to-one?

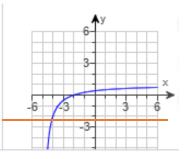
- No Yes
- 9) For the following function, determine whether the function is one-to-one.

Is the function one-to-one?

- No
- Yes



The graph of a function f is given. Use the horizontal-line test to determine whether f is one-to-one.


Is f one-to-one?

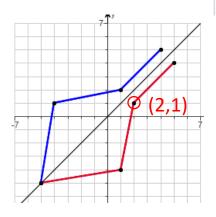
Yes No

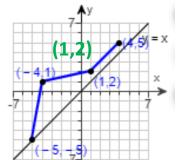
I can draw a horizontal line and touch the graph more than once

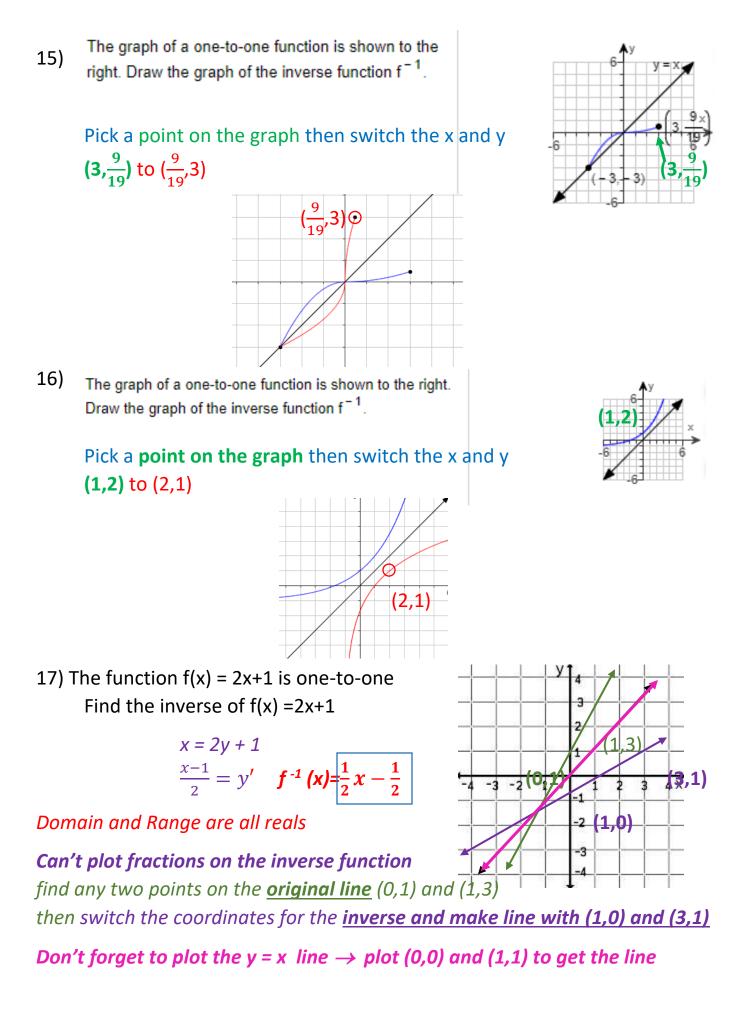
 The graph of a function f is given. Use the horizontal-line test to determine whether f is one-to-one.

Is f one-to-one?

🔮 Yes


13)
$$f(x) = -8x - 8$$
 $g(x) = -\frac{1}{8}(x+8)$
a) Find f(g(x)) $-8\left(-\frac{1}{8}(x+8)\right) - 8$
 $-8\left(-\frac{1}{8}x - 1\right) - 8$
 $x + 8 - 8 = x$
b) Find g(f(x)) $-\frac{1}{8}((-8x - 8) + 8)$


If both equal x then they are inverses of each other; therefore, YES


 $-\frac{1}{8}(-8x) = X$

14) The graph of a one-to-one function f is given. Draw the graph of the inverse function f⁻¹. For convenience (and as a hint), the graph of y = x is also given.

Pick a **point on the graph** then switch the x and y (1,2) to (2,1)

The function $f(x) = x^2 + 1$, $x \ge 0$ is one-to-one.

- 18) (a) Find the inverse of f and check the answer.
 - (b) Find the domain and the range of f and f⁻¹.
 - (c) Graph f, f^{-1} and y = x on the same coordinate axes.


Switch x and y then solve for y.

up 1

Blue graph shape

 $f(x) = x^2 + 1$, $X = y^2 + 1$ Domain of f is $x \ge 0$ $\sqrt{x - 1} = y^2$ Nange of f is $y \ge 1$ $f^{-1}(x) = \sqrt{x - 1}$ Domain of f is $x \ge 1$ Domain of f is $x \ge 1$

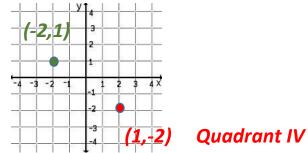
19) Find the inverse of $f(x) = \frac{3x}{x+5}$ Switch x and y then solve for y. $x = \frac{3y}{y+5}$ x(y+5) = 3y xy + 5x = 3y xy - 3y = -5x*factor out the y y(x-3) = -5x $f^{-1} = \frac{-5x}{x-3}$ Domain of f is $\{x | x \neq -5\}$ solve bottom Range of f is $\{y | y \neq 3\}$ coefficient in front Domain and Range of function and its inverse SWITCH

Domain of f^1 is $\{x \mid x \neq 3\}$ Range of f^1 is $\{y \mid y \neq -5\}$

The domain of a one-to-one function f is $[5,\infty)$, and its range is $[-9,\infty)$. State the domain 20) and the range of f^{-1} .

What is the domain of f⁻¹?

The domain of f^{-1} is $[-9,\infty)$. (Type your answer in interval notation.)


Switch domain and range

What is the range of f⁻¹?

The range of f^{-1} is $[5,\infty)$. (Type your answer in interval notation.)

21) If f is in quadrant II, what quadrant is f^{-1} in?

Put a point in quadrant II then switch x and y and see what quadrant the inverse coordinate is in.

*Quadrants I and III inverse coordinates do not move!

Ex) Find the inverse of
$$f(x) = \frac{7x+9}{4x-7}$$

Switch x and y then solve for y. $x = \frac{7y+9}{4y-7}$ $x(4y-7) = 7y+9$
 $4xy - 7x = 7y + 9$
 $4xy - 7y = 7x + 9$
*factor out the y $y(4x-7) = 7x + 9$
 $f^{-1} = \frac{7x+9}{4x-7}$
Domain of f is $\{x | x \neq \frac{7}{4}\}$ Range of f is $\{y | y \neq \frac{7}{4}\}$

Domain and Range of function and its inverse are opposite, THEREFORE... Domain of f^1 is $\{x | x \neq \frac{7}{4}\}$ Range of f^1 is $\{y | y \neq \frac{7}{4}\}$